Skip to content

SQL Injection

SQL Injection :- What, Why & How

1) What is SQL Injection.

2) Why It is happening (Forms of vulnerability)

3) How to prevent it?

 

1) What Is  SQL Injection

SQL injection is a code injection technique that exploits a security vulnerability occurring in the database layer of an application. The vulnerability is present when user input is either incorrectly filtered for string literal escape characters embedded in SQL statements or user input is not strongly typed and thereby unexpectedly executed. It is an instance of a more general class of vulnerabilities that can occur whenever one programming or scripting language is embedded inside another. SQL injection attacks are also known as SQL insertion attacks.

2) Forms of vulnerability

  • Incorrectly filtered escape characters

This form of SQL injection occurs when user input is not filtered for escape characters and is then passed into an SQL statement. This results in the potential manipulation of the statements performed on the database by the end user of the application.

The following line of code illustrates this vulnerability:

statement = "SELECT * FROM users WHERE name = '" + userName + "';"

This SQL code is designed to pull up the records of the specified username from its table of users. However, if the “userName” variable is crafted in a specific way by a malicious user, the SQL statement may do more than the code author intended. For example, setting the “userName” variable as

' or '1'='1

Or using comments to even block the rest of the query:

' or '1'='1';/*'

renders this SQL statement by the parent language:

SELECT * FROM users WHERE name = '' OR '1'='1';

If this code were to be used in an authentication procedure then this example could be used to force the selection of a valid username because the evaluation of ‘1’=’1′ is always true.

The following value of “userName” in the statement below would cause the deletion of the “users” table as well as the selection of all data from the “userinfo” table (in essence revealing the information of every user), using an API that allows multiple statements:

a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

This input renders the final SQL statement as follows:

SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't';

While most SQL server implementations allow multiple statements to be executed with one call in this way, some SQL APIs such as PHP’s mysql_query() do not allow this for security reasons. This prevents attackers from injecting entirely separate queries, but doesn’t stop them from modifying queries.

  • Incorrect type handling

This form of SQL injection occurs when a user supplied field is not strongly typed or is not checked for type constraints. This could take place when a numeric field is to be used in a SQL statement, but the programmer makes no checks to validate that the user supplied input is numeric. For example:

statement := "SELECT * FROM userinfo WHERE id = " + a_variable + ";"

It is clear from this statement that the author intended a_variable to be a number correlating to the “id” field. However, if it is in fact a string then the end user may manipulate the statement as they choose, thereby bypassing the need for escape characters. For example, setting a_variable to

1;DROP TABLE users

will drop (delete) the “users” table from the database, since the SQL would be rendered as follows:

SELECT * FROM userinfo WHERE id=1;DROP TABLE users;
  • Vulnerabilities inside the database server

Sometimes vulnerabilities can exist within the database server software itself, as was the case with the MySQL server’s mysql_real_escape_string() function. This would allow an attacker to perform a successful SQL injection attack based on bad Unicode characters even if the user’s input is being escaped. This bug was patched with the release of version 5.0.22 (released on 24th May 06).

  • Blind SQL injection

Blind SQL Injection is used when a web application is vulnerable to an SQL injection but the results of the injection are not visible to the attacker. The page with the vulnerability may not be one that displays data but will display differently depending on the results of a logical statement injected into the legitimate SQL statement called for that page. This type of attack can become time-intensive because a new statement must be crafted for each bit recovered. There are several tools that can automate these attacks once the location of the vulnerability and the target information has been established.

  • Conditional responses

One type of blind SQL injection forces the database to evaluate a logical statement on an ordinary application screen.

SELECT booktitle FROM booklist WHERE bookId = 'OOk14cd' AND 1=1;

will result in a normal page while

SELECT booktitle FROM booklist WHERE bookId = 'OOk14cd' AND 1=2;

will likely give a different result if the page is vulnerable to a SQL injection. An injection like this may suggest to the attacker that a blind SQL injection is possible, leaving the attacker to devise statements that evaluate to true or false depending on the contents of another column or table outside of the SELECT statement’s column list.

  • Conditional errors

This type of blind SQL injection causes an SQL error by forcing the database to evaluate a statement that causes an error if the WHERE statement is true. For example,

SELECT 1/0 FROM users WHERE username='Ralph';

the division by zero will only be evaluated and result in an error if user Ralph exists.

  • Time delays

Time Delays are a type of blind SQL injection that cause the SQL engine to execute a long running query or a time delay statement depending on the logic injected. The attacker can then measure the time the page takes to load to determine if the injected statement is true.

3) How To prevent It.

SQL Injection :- What, Why & How

1) What is SQL Injection.

2) Why It is happening (Forms of vulnerability)

3) How to prevent it?

 

1) What Is  SQL Injection

SQL injection is a code injection technique that exploits a security vulnerability occurring in the database layer of an application. The vulnerability is present when user input is either incorrectly filtered for string literal escape characters embedded in SQL statements or user input is not strongly typed and thereby unexpectedly executed. It is an instance of a more general class of vulnerabilities that can occur whenever one programming or scripting language is embedded inside another. SQL injection attacks are also known as SQL insertion attacks.

2) Forms of vulnerability

  • Incorrectly filtered escape characters

This form of SQL injection occurs when user input is not filtered for escape characters and is then passed into an SQL statement. This results in the potential manipulation of the statements performed on the database by the end user of the application.

The following line of code illustrates this vulnerability:

statement = "SELECT * FROM users WHERE name = '" + userName + "';"

This SQL code is designed to pull up the records of the specified username from its table of users. However, if the “userName” variable is crafted in a specific way by a malicious user, the SQL statement may do more than the code author intended. For example, setting the “userName” variable as

' or '1'='1

Or using comments to even block the rest of the query:

' or '1'='1';/*'

renders this SQL statement by the parent language:

SELECT * FROM users WHERE name = '' OR '1'='1';

If this code were to be used in an authentication procedure then this example could be used to force the selection of a valid username because the evaluation of ‘1’=’1′ is always true.

The following value of “userName” in the statement below would cause the deletion of the “users” table as well as the selection of all data from the “userinfo” table (in essence revealing the information of every user), using an API that allows multiple statements:

a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

This input renders the final SQL statement as follows:

SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't';

While most SQL server implementations allow multiple statements to be executed with one call in this way, some SQL APIs such as PHP’s mysql_query() do not allow this for security reasons. This prevents attackers from injecting entirely separate queries, but doesn’t stop them from modifying queries.

  • Incorrect type handling

This form of SQL injection occurs when a user supplied field is not strongly typed or is not checked for type constraints. This could take place when a numeric field is to be used in a SQL statement, but the programmer makes no checks to validate that the user supplied input is numeric. For example:

statement := "SELECT * FROM userinfo WHERE id = " + a_variable + ";"

It is clear from this statement that the author intended a_variable to be a number correlating to the “id” field. However, if it is in fact a string then the end user may manipulate the statement as they choose, thereby bypassing the need for escape characters. For example, setting a_variable to

1;DROP TABLE users

will drop (delete) the “users” table from the database, since the SQL would be rendered as follows:

SELECT * FROM userinfo WHERE id=1;DROP TABLE users;
  • Vulnerabilities inside the database server

Sometimes vulnerabilities can exist within the database server software itself, as was the case with the MySQL server’s mysql_real_escape_string() function. This would allow an attacker to perform a successful SQL injection attack based on bad Unicode characters even if the user’s input is being escaped. This bug was patched with the release of version 5.0.22 (released on 24th May 06).

  • Blind SQL injection

Blind SQL Injection is used when a web application is vulnerable to an SQL injection but the results of the injection are not visible to the attacker. The page with the vulnerability may not be one that displays data but will display differently depending on the results of a logical statement injected into the legitimate SQL statement called for that page. This type of attack can become time-intensive because a new statement must be crafted for each bit recovered. There are several tools that can automate these attacks once the location of the vulnerability and the target information has been established.

  • Conditional responses

One type of blind SQL injection forces the database to evaluate a logical statement on an ordinary application screen.

SELECT booktitle FROM booklist WHERE bookId = 'OOk14cd' AND 1=1;

will result in a normal page while

SELECT booktitle FROM booklist WHERE bookId = 'OOk14cd' AND 1=2;

will likely give a different result if the page is vulnerable to a SQL injection. An injection like this may suggest to the attacker that a blind SQL injection is possible, leaving the attacker to devise statements that evaluate to true or false depending on the contents of another column or table outside of the SELECT statement’s column list.

  • Conditional errors

This type of blind SQL injection causes an SQL error by forcing the database to evaluate a statement that causes an error if the WHERE statement is true. For example,

o protect against SQL injection, user input must not directly be embedded in SQL statements. Instead, parameterized statements must be used (preferred), or user input must be carefully escaped or filtered.

  • Parameterized statements

With most development platforms, parameterized statements can be used that work with parameters (sometimes called placeholders or bind variables) instead of embedding user input in the statement. In many cases, the SQL statement is fixed, and each parameter is a scalar, not a table. The user input is then assigned (bound) to a parameter. This is an example using Java and the JDBC API:

PreparedStatement prep = conn.prepareStatement("SELECT * FROM USERS WHERE USERNAME=? AND PASSWORD=?");
prep.setString(1, username);
prep.setString(2, password);
prep.executeQuery();
  • Enforcement at the database level

Currently only the H2 Database Engine supports the ability to enforce query parameterization. However, one drawback is that query by example may not be possible or practical because it’s difficult to implement query by example using parameterized queries.

  • Enforcement at the coding level

Using object-relational mapping libraries avoids the need to write SQL code. The ORM library in effect will generate parameterized SQL statements from object-oriented code.

  • Escaping

A straight-forward, though error-prone, way to prevent injections is to escape characters that have a special meaning in SQL. The manual for an SQL DBMS explains which characters have a special meaning, which allows creating a comprehensive blacklist of characters that need translation. For instance, every occurrence of a single quote (') in a parameter must be replaced by two single quotes ('') to form a valid SQL string literal. In PHP, for example, it is usual to escape parameters using the function mysql_real_escape_string() before sending the SQL query:

$query = sprintf("SELECT * FROM Users where UserName='%s' and Password='%s'",
                  mysql_real_escape_string($Username),
                  mysql_real_escape_string($Password));
mysql_query($query);

Routinely passing escaped strings to SQL is error prone because it is easy to forget to escape a given string. Creating a transparent layer to secure the the input can reduce this error-proneness, if not entirely eliminate it.

5 thoughts on “SQL Injection”

  1. Simply wish to say your article is as astounding. The clearness in your post is just excellent and i could assume you are an expert on this subject. Well with your permission let me to grab your RSS feed to keep updated with forthcoming post. Thanks a million and please carry on the gratifying work.

  2. Hey! Someone in my Myspace group shared this site with us so I came to give it a look.

    I’m definitely enjoying the information. I’m book-marking and will be
    tweeting this to my followers! Excellent blog and wonderful design.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

x  Powerful Protection for WordPress, from Shield Security
This Site Is Protected By
Shield Security